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SUMMARY

An e�cient dual-time implicit approach combined with unstructured moving grids is presented to solve
unsteady turbulent �ows. Unstructured grids suitable for both inviscid and turbulent viscous �ow regions
are generated using a successive re�nement method and the grid is moved adaptively based on the
boundary movements. Special care is taken to maintain the quality of the grid near the surface. The
unsteady two-dimensional compressible Navier–Stokes equations are discretized by an implicit approach
in a real time basis. The resulting set of implicit non-linear equations is then solved iteratively in pseudo-
time using a Runge–Kutta scheme. The k–� turbulence model equations are solved together with the
main �ow equations in a fully coupled manner. Results are presented for an unsteady transonic test case
(AGARD CT5) about a NACA0012 oscillating airfoil and comparisons with experimental data showed
good agreements. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A great variety of �ows with signi�cance to aerodynamic applications are concerned with
high Reynold number unsteady �ows around complex geometries. E�orts in CFD community
have, therefore, been towards the obtaining of e�cient procedures for moving grid genera-
tion and unsteady �ow solution algorithms in order to achieve the required accuracy with
a reduced computational e�ort. A number of calculations have been carried out using ex-
plicit methods [1]. However, the numerical stability restriction imposed on the maximum
allowable time step would increase the computational e�ort, particularly in viscous calcula-
tions, where the ratio of the maximum to the minimum size of the cells can span several
orders of magnitude. Implicit methods, on the other hand, allow the use of much larger time
steps leading to a signi�cant e�ciency for viscous �ows. Several implicit methods have been
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developed; however, the implicit dual-time method described by Jameson [2] allows an im-
plicit discretization to be used in real time, while at each real time step marches the solution
in a pseudo-time through an explicit time marching scheme. This method was successfully
implemented for rigid [2] and moving boundaries [3] on structured grids to solve Euler equa-
tions. However, the geometric complexity involved in aerodynamic applications often require
more �exible, unstructured grids to be used. In addition, despite inviscid models yielding a
cost e�ective approximation to the solution of unsteady problems, when strong shocks and
separated �ows are involved, it is necessary to incorporate viscosity and turbulent e�ects into
the model. Alonso et al. [4] used a zero-equation Baldwin–Lomax turbulence model while
Badcock et al. [5] have chosen a k–� two equation turbulence closure. Chassaing et al. [6]
utilized the more sophisticated Reynolds stress model. Despite promising results, all these
works have been carried out on structured grids.
Using unstructured grids for accurate and e�cient calculation of turbulent viscous �ows

were just recently reported [7] and mostly for steady-state �ow calculations. Thus, the objective
of the present work is to develop an implicit unstructured moving grid approach which can
be applied to unsteady turbulent Navier–Stokes calculations.

2. UNSTRUCTURED MOVING GRID GENERATION

Unstructured grids suitable for both inviscid and viscous �ow regions are generated based on a
combination of grid enrichment procedures, whereby new grid points and point connectivities
are created simultaneously [7]. The method does not require an initial distribution of grid
points within the �ow domain. Also, unlike the majority of the existing methods, which start
with a well-re�ned distribution of the geometry, the present approach adopts a very crude
initial discretization of the geometry and the outer boundary. Surface and �eld grids are then
generated simultaneously as the cell subdivision process continues. More details about this
method can be found in References [7, 8] and they will not be mentioned here. The grid is
then moved adaptively based on the boundary movements using a modi�ed spring analogy

Figure 1. Grid movement strategy for viscous grids (left before and right after movement).
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approach. In this approach, the outer boundary nodes are held �xed while the instantaneous
location of points on the moving surface are speci�ed. The position of inner nodes are then
de�ned by solving the static equilibrium equations that result from summing the forces in
the spring system at each node. Special care is also taken to maintain the quality of the
grid near the surface by increasing the sti�ness of the near wall springs. This approach also
allows geometric de�ections required by large CFL numbers of the implicit solution methods.
Figure 1 shows the unstructured viscous grid generated around NACA 0012 airfoil before and
after movement. Here airfoil reaches pitch angle 15◦ by 200 interval steps. As illustrated grid
quality inside the viscous layer is preserved during the mesh movement process.

3. NUMERICAL FLOW SOLUTION ALGORITHM

Two-dimensional unsteady compressible �ow is governed by Reynolds-averaged N.S.
equations

@Q
@t
+
@(F i − F v)

@x
+
@(G i −Gv)

@y
=0 (1)

where Q=(�; �u; �v; �E) is the vector of conserved variables, F i and G i represent the con-
vective �uxes and F v and Gv describe the e�ect of viscous di�usion. Here �, u, v and E
denote the density, Cartesian velocity components and total energy, respectively.
Turbulence e�ects can be taken into account by using a suitable turbulence model. In this

work the standard two-equation k–� model is used [9]. The turbulent transport equations can
be written in a form similar to that used for the mean-�ow equations

@Qt
@t
+
@(F it − F vt )

@x
+
@(G it −Gvt )

@y
= St (2)

where Qt = (�k; ��), F it and G
i
t represent the turbulent convective �uxes and F

v
t and Gvt

describe the e�ect of turbulent viscous di�usion. The source term St describes production and
dissipation of turbulence quantities. Note that in the present work turbulence Equation (2) is
solved together with main �ow equations in a fully-coupled manner. The semi-discrete form
of Equation (1) can be written as

d
dt
(QiAi) + Ri(Q)−Di(Q)=0 (3)

where Ai is the area of the cell and Ri(Q) includes the convective and viscous �uxes. The
arti�cial dissipation �uxes Di(Q) are also added for numerical stability reasons. The proper-
ties over each cell edge are evaluated using an averaging method. More details about the
development of this approach can be found in Reference [7]. The d=dt operator can be
approximated by an implicit backward di�erence formula of kth order of accuracy in the
form: d

dt =
1
�t

∑k
q=1

1
q (�

−)q, where �−Qn+1
i =Qn+1

i −Qn
i . Using a second-order accurate time

discretization, Equation (3) can be written in a fully implicit form (in real time) as

3
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1
2�t

(An−1i Q n−1
i ) + Ri(Qn+1)−Di(Qn+1)=0 (4)
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This equation is nonlinear for Qn+1 and therefore cannot be solved analytically. At this stage,
it is convenient to rede�ne a new residual R∗, referred to as unsteady residual, that equals
to the left-hand side of Equation (4). The new equation can be seen as the solution of a
steady-state problem which can then be solved with a time marching method by introducing
a derivative with respect to a �ctitious pseudo-time

An+1i
@Qn+1

i

@�
+ R∗

i (Q
n+1)=0 (5)

The pseudo-time problem can then be solved by using any time-marching method designed to
solve steady-state problems, utilizing standard acceleration techniques. In the present work an
explicit four-stage Runge–Kutta method with local pseudo-time stepping and residual smooth-
ing is used. Geometric conservation laws are also applied to calculate the areas in each time
step in order to ensure that large errors are not encountered when solving the physical conser-
vation laws. The no-slip boundary condition is used at the surface boundaries. Non-re�ecting
boundary conditions based on characteristic analysis are applied in the far �eld. The wall
function conditions are also considered for near wall turbulent calculations.

4. RESULTS

A high Reynolds number unsteady transonic �ow over NACA0012 pitching airfoil is consid-
ered from the AGARD experimental test cases [10]. For this case, the periodic motion of the
airfoil is de�ned by the angle of attack as a function of time as �(t)= �m�0 sin(!t), where
�m is the mean incidence, �0 is the amplitude of the pitching oscillation and ! is the angular
frequency of the motion which is related to the reduced frequency k by k=!c=2U∞ (here,
c is the airfoil chord and U∞ is the free-stream velocity). The airfoil oscillates about its
quarter chord. The selected case is AGARD test case CT5, with the conditions: M∞=0:755,
�m =0:016, �0 = 2:51, k=0:0814. This is a challenging test case due to a higher value of
the Mach number which may make the viscous e�ects more signi�cant. The �ow is charac-
terized by the presence of a strong shock wave, which develops alternatively on the upper
and lower surface of the airfoil. A comparison between the viscous and inviscid predicted
pressure distributions by the experimental data is shown in Figure 2 for four di�erent inci-
dences during the cycle. An over-prediction of the pressure jump across the shock is observed
for inviscid solutions; however, the viscous results show smeared more accurate shock pre-
dictions. Three unstructured grids are used for grid study calculations. The number of cells
for coarse, medium and �ne grids are 8829, 13 487 and 15 304, respectively. The compar-
ison of the normal force and moment coe�cients with the experimental data is shown in
Figure 3 for these three grids. As illustrated, no signi�cant di�erence can be seen between
medium and �ne grids. Therefore, the medium grid is chosen for calculations in this paper
with the unsteady CFL number 27 000 for 30 real time steps per period. Another important
issue in the dual-time method is to do a proper selection of pseudo-time, steady-state error.
Numerical experiments showed that this parameter has an e�ect on the accuracy of the so-
lutions and the computational time. If large values are used for this parameter, as shown in
Figure 4, the accuracy of the solution becomes very poor, whereas the use of small values
increase the computational time considerably. The case studied in the present work has shown
that the optimum value for pseudo-time, steady-state error has been the same order as 10−3.
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Figure 2. Instantaneous pressure distributions for AGARD test case CT5.
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Figure 3. Normal force and moment coe�cient loops for AGARD test case CT5.
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Figure 4. E�ect of pseudo-time error on the accuracy of solution.
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Figure 5. E�ect of Npp on the accuracy of solution.

The e�ect of number of real time steps per period (Npp) on the accuracy of the solution
is shown in Figure 5. As illustrated, even reasonably low Npp, i.e. 30, can lead to accurate
results. The computational time is reduced by 95 percent in comparison with original fully
explicit method.

REFERENCES

1. Batina JT. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis.
AIAA Journal 1991; 29(3):327–333.

2. Jameson A. Time dependent calculations using multigrid with applications to unsteady �ows past airfoils and
wings. AIAA Paper 91-1596, 1991.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1107–1113



UNSTRUCTURED MOVING GRIDS FOR IMPLICIT CALCULATION OF UNSTEADY FLOWS 1113

3. Gaitonde AL. A dual-time method for the solution of the unsteady Euler equations. Aeronautical Journal 1994;
283–291.

4. Alonso J, Martinelli L, Jameson A. Multigrid unsteady Navier–Stokes calculation with aeroelastic application.
AIAA Paper 95-004.

5. Badcock KJ, Cantariti F, Hawkins I, Gribben B, Dubuc L, Richards BE. Simulation of unsteady turbulent �ows
using the pseudo time method. Aerospace Engineering Department Report 9721, Glasgow University, 1997.

6. Chassaing JC, Gerolymos GA, Vallet I. Reynolds-stress model dual-time-stepping computation of unsteady 3-D
�ows. AIAA Journal 2003; 41(10):1882–1894.

7. Jahangirian A, Johnston LJ. Automatic generation of adaptive unstructured grids for viscous �ow applications.
5th International Conference on Numerical Grid Generation in CFD, Mississippi State University, 1996.

8. Jahangirian A, Johnston LJ. Unstructured grid generation and �ow adaptation for external aerodynamic �ows.
In Numerical Methods for Fluid Dynamics V, Morton K, Baines M (eds). Oxford University Press: Oxford,
1995.

9. Launder BE, Spalding DB. The numerical computation of turbulent �ow. Computer Methods in Applied
Mechanics and Engineering 1974; 3:269–289.

10. AGARD. Compendium of Unsteady Aerodynamic Measurements, R-702, 1982.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1107–1113


